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ABSTRACT 

The accurate recognition of guitarist performance is 

challenging compared with other instruments because a 

guitar player typically plays several notes at once and uses 

both hands in different ways. In this paper, we propose a 

sensor-based guitar that consists of two groups of sensors. 

One sensor is used to recognize the fingering positions of 

the fretting hand, and the other is used to detect the guitar 

strings that are played by the picking hand. We design an 

embedded system for accurate sensing and propose a data 

analysis mechanism to precisely figure out the played pitch 

and the duration of notes using the sensed data. We realize 

our scheme as a high-quality prototype that detects guitarist 

performance with accuracy sufficient for the transcribing of 

a performance. We also present real application examples 

such as a rhythm game for interactive lessons and a music 

sharing feature with user created musical scores. 
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INTRODUCTION 

With the development of ICT and multimedia technology, 

many fields are changing. Things that were unimaginable in 

the past, even things unrelated to IT, are now connected to 

the Internet, and various data analyses are becoming a 

driving force of the changes in society.  

Convergence of musical instruments and IT is one such 

trend. The development of an IT guitar to assist beginning 

guitar players is one example of this trend. These products 

mainly focus on providing a guide, for fingering or playing 

technique, on the fretboard by using embedded LEDs. 

Fretlight [4] is a product that uses LEDs installed on the 

fretboard of the guitar to provide a fingering position guide 

by turning on the LEDs. Fret Zealot [5] is another product, 

comprising an LED strip and controller attached to the 

guitar. Still, existing products do not provide feedback 

through identification of correct playing. Therefore, 

research into providing feedback on user's playing through 

analysis of multimedia data from musical instruments has 

conducted. 

A number of techniques are being developed to sense the 

performance of musical instruments to transcribe musical 

scores or give feedback to players. Techniques for 

analyzing audio by recording sounds from instruments 

[1,3,17,18] have been traditionally widely studied. However, 

there is a limitation in that the audio-based approach is 

applicable to fixed-tuned musical instruments. In addition, 

it is difficult to estimate pitches when multiple sounds are 

played at the same time, such as a chord, and even harder 

when there is noise from the microphone used. Another 

approach proposed in [19] analyzes violin fingering through 

video analysis. However, the match ratio for the onset, 

offset, and pitches elements is only 65%, which is limited 

for practical applications. Moreover, a string instrument has 

the characteristic that even if the fingerboard is fingered, it 

does not make a sound unless the strings are actually 

plucked. Therefore, judging the onset and offset depending 

on whether the fingerboard is fingered may result in a 

difference from the actual performance. 

To increase sensing accuracy, approaches that involve 

physically embedded sensing circuits in musical 

instruments have been studied. Pianos with embedded 

sensors [6,10] are such studies. However, these pianos 

require only one kind of sensor and thus detecting a key 

press is relatively simple. More complicated approaches are 

required in the case of string instruments. One study [14] 

proposed an approach to judge the accuracy of a musical 

performance on a cello. The approach includes a sensing 

circuit on the fingerboard and combines sound recording 

data through a microphone and motion sensing data via a 

video. Other approaches [2,7,8,12] involved attaching 

sensors to the fingerboard and bow of a violin to sense the 

fingering and bowing of the strings. However, such 

approaches are difficult to apply to guitars. A guitar is 

played by fingering the chord with one hand and plucking 
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the strings with the other hand or a pick. Therefore, both the 

left and right hand motions, which cause the vibrations of 

the strings, should be sensed to recognize guitar 

performance. Similar to a sensor-attached bow in the case 

of a violin, a sensor circuit can be configured by wiring a 

metal guitar pick [15,16] However, this approach causes 

discomfort to players and limits guitarists from playing in 

various styles (e.g., fingerstyle), particularly in acoustic 

guitar. These difficulties have imposed limitations on 

transcribing music from an acoustic guitar and eliminating 

the gaps that have to be overcome to actually apply it to real 

instruments. 

In this paper, we propose a sensor-based guitar. We add 

sensors to an LED-based guitar [13] that allows guitar 

students to practice guitar by lighting LEDs on the 

corresponding positions on the guitar fingerboard. Our 

sensor-based guitar consists of two groups of sensors. One 

sensor is used to recognize the fingering positions of the 

fretting hand, and the other is used to detect the guitar 

strings that are played by the picking or plucking hand. We 

design an embedded system for accurate sensing and 

propose a data analysis mechanism to precisely figure out 

the played pitch and the duration of notes by using the 

sensed data. The proposed method realizes music 

transcription with a very high level of accuracy through a 

sensor- and circuit-based approach. We realize our idea as a 

high-quality prototype and conduct experiments to evaluate 

the accuracy of the detection. In the evaluation, we analyze 

and compare the sound recorded in audio and the data 

sensed in the prototype. To the best of our knowledge, the 

proposed guitar is the first attempt to accurately recognize 

performance information by sensing both the fingered 

position and plucked strings when playing a guitar. We also 

present real application examples such as a rhythm game 

for interactive lessons and a music sharing feature with user 

created musical scores. 

DESIGN AND IMPLEMENTATION OF SENSING CIRCUIT 

 

Figure 1. Sensor-based guitar 

We design sensing circuits and implement a commercial-

grade guitar prototype by integrating the sensing circuits. 

The guitar is composed of a main controller as an 

embedded system, a fingerboard-sensing circuit, and a 

string-sensing circuit. The external appearance of the guitar 

is shown in Fig. 1. We implement an embedded system 

using Atmel SAM3A8C as a Micro Controller Unit (MCU), 

which is connected to the fingerboard-sensing circuit and 

string-sensing circuit. 

 

Figure 2. Various features of the embedded system 

The embedded system has been significantly improved to 

adapt sensing features while providing all the existing 

useful features from our previous study [13]. For example, 

with the LED guidance feature, a user can easily find 

fingering positions on the fingerboard. The user can also 

search for songs from a music server and download them to 

the embedded system through a smartphone application. 

Then, without a smartphone, the user can practice the stored 

songs with LED guidance. In addition, the user can quickly 

master a certain song by using the efficient practice features, 

such as Rewind, Fast-Forward, and AB Repeat, provided in 

the embedded system. By newly employing sensors, the 

system can recognize the pitches and duration of the notes 

played. Fig. 2 shows the embedded system and some 

displayed menus. In this paper, we focus on the design and 

implementation of the fingerboard-sensing circuit and 

string-sensing circuit. 

Fingerboard-Sensing Circuit 

 

Figure 3. The fingerboard of the sensor-based guitar:  

(a) PCB embedded under the fingerboard,  

(b) the fingerboard with fret wires 

To detect fingering positions, we have integrated a sensing 

circuit with an LED circuit, as shown in Fig. 3(a), and 

placed it under the fingerboard, as shown in Fig. 3(b). We 

have split a conventional fret wire into six fret wires, which 

are parts of the sensing circuit. This allows a total of 120 

fret wires to play a role as individual switches when they 

are in contact with conductive strings. 

We use each string as a part of the circuit so that if a 

particular string and fret wire touch, a closed loop between 

the fingerboard and the string is made and the position can 

be electrically recognized. Information on simultaneous 

multiple positions is input into the main controller in the 

form of a bit stream. By using 16 8-bit shift registers, it is 
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possible to sense various combinations of fingering 

information for 120 fret wires with only six data input pins. 

String-Sensing Circuit 

The guitar employs six piezo sensors to recognize whether 

the strings have been plucked. The piezo sensors are located 

under the saddles, which sense the change of vibration. 

However, to prevent the vibrations from transmitting to 

other piezo sensors through the saddle, we divide the saddle 

into six and attach the piezo sensors under each separated 

saddle, as shown in Fig. 4. 

 

Figure 4. The bridge of a sensor-based guitar:  

(a) six separate saddles,  

(b) six piezo sensors located under the saddles 

The six sensors are connected to the analog input pins of the 

embedded system. The string sensing is determined by 

comparing an analog input value with a certain threshold 

value. Details on how to determine the duration of a note 

played are explained in the following section. 

SENSING DATA ANALYSIS MECHANISM 

When a user plays the guitar, recognizing the user's 

performance is accomplished through two sensing 

mechanisms. Fret sensing recognizes the fingering positions. 

String sensing recognizes the onset and offset for each 

string that is plucked. The sensed data are further processed 

by the embedded system to obtain meaningful information. 

In this section, we explain the mechanisms of analyzing the 

sensed data. 

Fingering Position Sensing 

Because we use each string as part of the circuit, if a 

particular string touches a particular fret wire, the MCU 

reads a high value for the fret wire; otherwise, it reads a low 

value. The MCU scans each fret wire every 2ms and finds 

fingering positions as a set of coordinates that express string 

and fret numbers. Therefore, even if multiple frets are 

fingered at once, the fingering position can be recognized 

with high accuracy. In a stringed instrument, if a user 

plucks a string while pressing two or more frets on the same 

string, the actual sound is generated by the vibration of a 

string length from the nearest fret to the guitar body to the 

saddle in the guitar body. Therefore, we consider the 

nearest fret to the saddle a meaningful fingering fret during 

the data-processing step shown in Fig. 5. 

 

Figure 5. Fret-sensing mechanism 

Recognizing the duration of a note 

This section describes how to process the sensed data to 

recognize the duration of notes played by the user. We 

calculate the envelope of the analog data and compare it 

with the threshold to recognize the onset and offset of a 

note. Table 1 explains variables used for recognizing the 

duration of a note. 

Envelope calculation mechanism 

The MCU reads analog input data from the piezo sensors 

every 2ms (𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 = 500 𝐻𝑧). The sample rate can 

be increased with a higher performance MCU. When a user 

plucks a string, the raw input data ( 𝑉𝑟𝑎𝑤 ) gradually 

decreases in amplitude, repeating positive and negative 

values. Therefore, if the raw data itself is used in the 

sensing mechanism, it is recognized that the string is 

plucked several times because 𝑉𝑟𝑎𝑤  repeatedly crosses the 

threshold. Therefore, we do not use 𝑉𝑟𝑎𝑤  directly, but 

calculate 𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑  by |𝑉𝑟𝑎𝑤 − 𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒|, where the 𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  

is the measured as an average vibration value of the string 

in the absence of any vibration. We calculate an envelope 

(𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒) of 𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑 and compare it with the threshold to 

recognize the onset and offset of the note. The following 

equations are used to calculate the envelope. 

𝑔𝐴𝑡𝑡𝑎𝑐𝑘 =  𝑒
− 

1
𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒 × 𝑡𝐴𝑡𝑡𝑎𝑐𝑘 (1) 

𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑒
− 

1
𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒 × 𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒 (2) 

𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑛) = 𝑔 × 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑛−1) + (1 − 𝑔) × 𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑛) 

 {
𝑔 = 𝑔𝐴𝑡𝑡𝑎𝑐𝑘 , 𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑛) > 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑛−1)

 𝑔 = 𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒 , 𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑛) ≤ 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑛−1)
 

(3) 
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Variables Descriptions 

𝑉𝑟𝑎𝑤  Raw vibration data from piezo sensor. 

𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  Average 𝑉𝑟𝑎𝑤  value when there is no vibration. 

𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑 Vibration value shifted by baseline, i.e., |𝑉𝑟𝑎𝑤 − 𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒|. 

𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒  Vibration value from the envelope of the oscillating signal. 

𝑡𝐴𝑡𝑡𝑎𝑐𝑘 Time for initial run-up of vibration level from nil to peak, beginning when the string is first plucked. 

𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒 Time for the level to decay from peak to zero. 

𝑔𝐴𝑡𝑡𝑎𝑐𝑘 Gain coefficient for attack time calculated by the time-constant equation, Eq. (1). 

𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒  Gain coefficient for release time calculated Eq. (2). 

𝑇ℎ𝑜𝑛𝑠𝑒𝑡  Threshold value of the envelope to determine onset. 

𝑇ℎ𝑜𝑓𝑓𝑠𝑒𝑡  Threshold value of the envelope to determine offset. 

𝐼𝑚𝑎𝑥 Maximum value of the influence on the envelope due to plucking other strings. 

Table 1. The variables used for calculating the duration of a note

 

Figure 6. 𝑽𝒔𝒉𝒊𝒇𝒕𝒆𝒅 vibration waveform and 𝑽𝒆𝒏𝒗𝒆𝒍𝒐𝒑𝒆 

calculation result 

 𝑡𝐴𝑡𝑡𝑎𝑐𝑘  in Eq. (1) is the time from when the sound begins to 

emerge until it reaches the peak, and it allows the user to 

specify how quickly the envelope follows a higher value. In 

contrast, 𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒  in Eq. (2) represents how quickly the 

envelope follows a smaller value. 𝑔𝐴𝑡𝑡𝑎𝑐𝑘  and 𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒  are 

the gain factors that determine the rate of reflection and 

retention of the sampling data, respectively. Eq. (3) 

indicates that 𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑛)  is updated by reflecting the new 

𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑛)  at the (1 − 𝑔)  ratio and maintaining 

𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑛−1)  at the 𝑔 ratio. The 𝑔  value is calculated by 

substituting the 𝑔𝐴𝑡𝑡𝑎𝑐𝑘  calculated in Eq. (1) when 

𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑛)  value increases to a larger value than 

𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑛−1) and the 𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒  calculated in Eq. (2) when 

decreasing to a smaller value than 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑛−1) . 𝑡𝐴𝑡𝑡𝑎𝑐𝑘 

and 𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒 can be used to adjust the sensitivity according 

to the user’s preference. In this paper, 𝑡𝐴𝑡𝑡𝑎𝑐𝑘  of 5ms and 

𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒 of 10ms are set as default values. Fig. 6 shows an 

example of 𝑉𝑠ℎ𝑖𝑓𝑡𝑒𝑑 and 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒  as a result of applying the 

above formula. 

Setting a threshold through a calibration process 

Using 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 , we determine the onset and offset of the 

note. The criterion is the threshold set by analyzing the 

intensity of vibration. There is an onset threshold (𝑇ℎ𝑜𝑛𝑠𝑒𝑡) 

and offset threshold (𝑇ℎ𝑜𝑓𝑓𝑠𝑒𝑡). When the value of 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒  

exceeds 𝑇ℎ𝑜𝑛𝑠𝑒𝑡 , it is judged to be the onset time. When it 

falls below the 𝑇ℎ𝑜𝑓𝑓𝑠𝑒𝑡  value, it is judged to be the offset 

time. 

The threshold needs to be set differently for each string and 

may be adjusted depending on the user’s sensitivity 

preference or the change of string tension due to the 

environment (e.g., temperature, humidity). Therefore, we 

provide a calibration feature for each string.  

At the beginning of calibration, the embedded system will 

instruct the user not to touch the strings for 2 seconds. 

During this time, an average value of the input analog data 

is derived and set as 𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . When 𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  setting is 

completed, the embedded system guides the user to pluck 

the six strings one by one. If the user plucks the strings 

according to the instructions, the vibration values of the six 

strings are input into the MCU. The MCU analyzes the 

input vibration values from each string. The vibration 

caused by one string may influence to the other five sensors 

due to the resonance phenomenon, vibration transmission, 

and so on. Therefore, We use 𝐼𝑚𝑎𝑥 , which is maximum 

value of the influence on the envelope due to plucking other 

strings. For example, the 𝐼𝑚𝑎𝑥 of string 1 is the maximum 

value of the influence when strings 2 to 6 are plucked. This 

allows the error of certain strings being mistakenly sensed 

when playing another string to be avoided. 

𝑇ℎ𝑜𝑛𝑠𝑒𝑡  is set to 1.2 times 𝐼𝑚𝑎𝑥 . 𝑇ℎ𝑜𝑓𝑓𝑠𝑒𝑡  is set to an 

average value of 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒  for 200ms from time when 

𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒  becomes smaller than √𝐼𝑚𝑎𝑥. If 𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 value of 

a particular string is equal to or greater than 𝑇ℎ𝑜𝑛𝑠𝑒𝑡 , we 
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determine that the string has been plucked, and when the 

𝑉𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒  value of the string is less than 𝑇ℎ𝑜𝑓𝑓𝑠𝑒𝑡 , we 

determine that the note of the string is no longer playing. 

EVALUATION 

In this section, we evaluate the performance of the guitar 

that we proposed in terms of the sensing success rate and 

the error in duration of the note. The performance for the 

evaluation is performed by the experimenter who is an 

intermediate guitar player. We evaluate the success rate of 

multipitch detection for seven basic guitar chords shown in 

Fig. 7. The experimenter plucks each chord 10 times with 

various strengths. The plucking strengths are varied from 

the minimum for generating an audible pitch to the 

maximum strength of the experimenter. We use log data 

generated in our embedded system to check the result. The 

log data include times and sets of a fret number and a string 

number. The performance is also recorded with a 

microphone to find a ground truth for the duration of a note. 

 

Figure 7. The seven guitar chords used to measure a sensing 

success rate 

The sensing success rate is evaluated as passing or failing 

regarding whether the user’s performance is sensed. The 

sensing success rate is determined as a “pass” if the 

performance is sensed well. On the other hand, if it is not 

sensed correctly, sensed many times, or sensed from other 

strings, then it is determined as a “fail.” This sensing 

success rate is calculated as in Eq. (4). 

𝑆𝑒𝑛𝑠𝑖𝑛𝑔 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =
𝑇ℎ𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑠𝑠𝑒𝑠

𝑇ℎ𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
× 100(%) (4) 

  

A sensing success rate has been measured as 100% in this 

experiment. Note that if a user plucks guitar strings too 

weakly, making almost no sound, it cannot be sensed 

accurately. The sensing success rate may also be affected 

when the tension of strings changes as time goes, or due to 

temperature and humidity. In these cases, the user should 

reset 𝑇ℎ𝑜𝑛𝑠𝑒𝑡  and 𝑇ℎ𝑜𝑓𝑓𝑠𝑒𝑡  through a calibration process for 

accurate sensing. 

The frequency of calibration depends on the user’s 

preferred sensing accuracy and the degree of change in the 

guitar strings’ state. Normally, the user should recalibrate 

when the user is tuning the guitar, such as if the user installs 

new guitar strings or adjusts the tuning of the strings. The 

guitar will provide constant accuracy, even without 

recalibration for several weeks, if the tensions of the guitar 

strings remain constant. 

The error in duration of the note is evaluated by checking 

the difference between the duration recognized by our 

guitar and the duration found in the recorded audio file. The 

amplitude scale of audio goes from positive to negative 

repeatedly within the range between -1.0 and +1.0. We use 

absolute value of the amplitude (|𝑎𝑚𝑝|) for defining onset 

and offset times. When |𝑎𝑚𝑝| of the recoded audio is more 

than 0.1 (white noise) and maintained for 2ms, we consider 

it the onset of the note. When |𝑎𝑚𝑝|  is below 0.1 and 

maintained for 10ms, we define it as the offset of the note. 

The duration between the onset time and the offset time 

from the recorded audio is used a ground truth. 

The range of the errors in duration of the note for each 

string is shown in Fig. 8. In this evaluation, the 

experimenter plucks each string 10 times at various 

strengths and then mutes after a random time between about 

250ms and 850ms. The duration of most common notes 

(e.g., a quarter note, an eighth note) belongs to this range. 

The error value in Fig. 8 is the absolute value of the original 

error value. The average error for all strings is 15.6ms and 

in most cases the errors are within 40ms. These errors will 

have to be improved to satisfy instrumentalists and 

electronic musicians in terms of the perceived quality for 

action-to-sound latency to be maintained less than 10ms [9]. 

However, such errors can be ignored in a music 

transcription application where we map a recognized 

duration of a note into one of the known durations for 

common notes. In order words, it is less likely to judge a 

note as a wrong note because the duration difference 

between two different notes is sufficiently large. For 

example, in moderato (bpm=90), a quarter note, an eighth 

note, and sixteenth note are 666.6ms, 333.3ms, and 

166.6ms, respectively.  

 

Figure 8. The range of errors in duration of the note in each 

string 

APPLICATIONS 

In this section, we introduce various utilization methods of 

the proposed guitar. A typical application creates musical 

scores. Using our guitar, musical scores can be generated 

with performance information by using the results of the 

pitches and durations of notes detected. After the 

performance information is analyzed by our scheme, post-
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processing is required to make the sensed data a musical 

score. Since people cannot play with a perfect beat when 

performing, the duration of the actually played note is 

mapped to the closest typical note duration. For example, if 

a user sets the bpm to 90 and plays a note for 700ms, it is 

determined as a quarter note. Note that the duration of a 

quarter note with a bpm of 90 is 666.7ms and a dotted 

quarter note is 1,000ms, so the duration of 700ms should be 

categorized as a quarter note. 

Even if a user plays the same song, created musical scores 

may differ depending on the style of the user’s performance. 

If a user plays four bars of Mozart’s “Twinkle, Twinkle, 

Little Star” and plays each note similar to the duration of 

the original notes of the musical score, the generated 

musical score will be like that of Fig. 9(a). However, if the 

user plays a note for a shorter duration, an eighth note and a 

rest may be inserted for a quarter note, as shown in Fig. 

9(b). Depending on the implementation of the application, it 

can also be judged as staccato. 

 

Figure 9. Result of musical score creation depending on 

performance style 

As an extension to the application, after creating one’s own 

musical scores, the user can also share them on the Web 

using a sheet music sharing platform [12]. Shared musical 

scores can be downloaded through a smartphone application, 

and the user can receive LED guidance. In addition, if a 

user plays the guitar in connection with our smartphone 

application, TAB score is displayed on the smartphone 

application in real time, as shown in Fig. 10. 

 

Figure 10. TAB score displayed on a smartphone 

Another very useful application is a feedback system. The 

proposed guitar can analyze the sensed data to determine 

whether the user is performing correctly and provide 

feedback in real time. Performance feedback is provided 

through the LEDs on the guitar’s fingerboard, where the 

fingering position that user has to adopt is illuminated in 

green. The fingering position LED lights turn yellow if the 

user performs correctly, while they turn red when the user 

performs incorrectly. The performance feedback with LED 

color changes and the feedback scheme for the user’s 

performance result are shown in Fig. 11. 

 

Figure 11. Feature of real-time feedback: (a) performance 

feedback by changing LED color, (b) feedback scheme by LED 

color change 

In the case of playing the guitar in connection with the 

smartphone application, real-time performance feedback is 

provided through the smartphone, as shown in Fig. 12. 

Through an interface like a rhythm game, the application 

displays information about the strings and frets to be 

fingered, and since the user can check the accuracy and 

combo scores of their performance, they can gain not only 

skill improvement, but also enjoyment. Such interactive 

lessons help guitar learners learn more effectively. In 

addition, it is expected that various applications will be 

possible by using sensed data. A video clip that introduces 

the various features provided by our proposed guitar can be 

found in [11]  

 

Figure 12. Feature of real-time performance feedback with 

smartphone  

CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed a sensor-based guitar that 

consists of two groups of sensors. The proposed guitar 

employs a sensing circuit in the fingerboard to recognize 

the fingering positions of the fretting hand, and includes 

attached piezo sensors under the saddles to detect the guitar 

string that are played by picking hand. 

Many studies have employed theoretical approaches to 

recognize musical instrument performance information by 

analyzing multimedia data such as video and audio. 
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However, these approaches have to process large amounts 

of data for analysis which is difficult for a resource 

constrained embedded system to process in real-time. 

Therefore, there are still limitations to apply them to real 

guitars. We have reduced the amount and type of data to be 

analyzed, with which the existing approaches still could not 

get sufficient accuracy. Instead, we have designed 

appropriate sensor circuits. Fingering positions and plucked 

string judgments for multipitch estimation were made 

recognizable by hardware circuitry. This was yet a 

challenging task for an embedded system with limited 

number of input/output pins. The analog data from the 

piezo sensor was analyzed together with digital data from 

the hardware circuitry to precisely calculate the onset time, 

offset time, and duration of the note. This is one of our 

main contributions in this paper. Other contributions for the 

interactive learning environment and tactile interface can be 

found in our developed features or applications such as 

music transcription, a sheet music sharing platform, an LED 

feedback guitar, and a smartphone rhythm game. 

In the future, one may study how to utilize only one of two 

sensor groups or re-design a hardware circuitry to get 

partial information, for example, the fret number without 

knowing the string number. This may improve the accuracy 

of existing audio-based analysis with a relatively simplified 

hardware configuration. We also plan to evaluate user 

satisfaction with our guitar. 
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