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Abstract—In this paper, we propose a federated
learning(FL)-based collaborative anomaly detection
system. This system consists of multiple edge nodes
and a server node. The edge nodes are in charge of not
only monitoring and collecting data, but also to train an
anomaly detection neural network classification model
based on the local data. On the other hand, the server
aggregates the parameters from the edges and gen-
erates a new model for the next round. This system
structure achieves light weight transmission between
the server and the edge nodes, and user privacy can be
well protected since raw data are not communicated
directly. We implement the proposed scheme in the
practical system and present experimental results that
demonstrate results competitive with those of state-of-
the-art models.

Index Terms—Internet of Things, Anomaly detec-
tion, Federated learning, Machine learning

I. Introduction
Due to the rapid development of communication tech-

nologies, smart technology devices have become increas-
ingly prevalent. Currently, Internet of Things (IoT) is
recognized as the one of the most prominent topics. The
IoT environment consists of interconnections between het-
erogeneous network devices. According to results in several
surveys, there were 8.4 billion IoT devices in the world in
the year 2017 [1]. Moreover, it is estimated that this will
soar to 30 billion devices by 2020 [2]. Furthermore, the
number of IoT devices by 2025 is expected to be more than
75 billion [3]. Therefore, we can clearly recognize that the
IoT market is rapidly expanding.

While these new technologies are enormously conve-
nient, they give rise to inescapable risks and challenges.
Particularly, promptly detecting cyber attacks is becoming
one of the most important issues for IoT. In practice,
cyber attacks, such as malware, botnet [4], and insider
attack [5], among others, occur rarely, and typically these
anomalies consume very few system resources, so it is
very difficult to detect and trace them. Nevertheless, these
cyber attacks generally occur in the data and features of
network transmission, and are potentially recognizable as
data anomalies, which is the basic premise for detecting
anomalies.

Anomaly detection system in the IoT networks identifies
misbehavior, such as faults and frauds from the massive
amount of interactions between the devices. Therefore,

the challenges include the enormous complexity of the
interconnected devices. Conventional anomaly detection
systems typically depend on data mining [6], statistics
[7], machine learning, or information theory. Recently,
the machine learning-based technique have gained much
attention and popularity because it can learn the fea-
tures of data sets autonomously and make relatively accu-
rate classifications and predictions using different models.
These methods in general fall into three categories: super-
vised (e.g., KNN [8], decision trees [9]), unsupervised (e.g.
clustering [10]), and semi-supervised learning (e.g., semi-
supervised SVM [11], semi-supervised Deep Learning [12]).

Most anomaly detection systems rely on a centralized
management method to collect and process data generated
from IoT devices or end users. With the explosion of
big data generated by the increasingly prevalent smart
devices, these conventional schemes consume high network
bandwidth and incur long transmission latency, and they
also face an issue with privacy since raw data has to be
communicated between the edge devices and the server.
Some efforts have been made to address these issues. For
example, state-of-art deep learning based anomaly detec-
tion systems in IoT are presented by specific techniques;
[13] adopt autoencoders (AE) to present anomaly detec-
tion scheme in wireless sensor networks (WSNs) under IoT
environment, and [14] propose an unsupervised anomaly
detection algorithm utilizing a CNN backbone and a
restricted boltzmann machine (RBM)-based system. In
[15], a collaborative anomaly detection system is proposed
based on the active learning framework, whereby the edge
node only selects the most valuable data to transmit to
the server using uncertainty sampling strategies, which can
reduce the bandwidth demand and transmission latency.
In [16], the cyber attack detection model for an edge
network empowered by FL is proposed. Each participant
sends its trained model to the server after local training,
eventually achieving enhanced data privacy and reducing
traffic load for the whole network.

In this paper, we propose a FL-based anomaly detection
system. In this system, each edge node trains an anomaly
detection neural network classification model based on
local data, and then the model parameters are reported
to the central server. By aggregating the parameters
from multiple edges, the server generates a new model
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and distributes this to the edge nodes for training the
local model in the next round. In this way, the data
transmission between the server and the edge nodes can
be significantly reduced, and user privacy can be well-
preserved since raw data communication between the edge
nodes and the server is not necessary. We implement the
proposed scheme in a practical system, and experimental
results are provided to demonstrate the performance of the
proposed scheme which performs better than non-FL’s.

The rest of this paper is organized as follows. In Section
II, we introduce the system model considered in this paper,
and discuss the details of the training of classification
model at the edge nodes, as well as the global model aggre-
gation and update at the server. We present experimental
results in Section III to evaluate the performance of the
proposed scheme, and we draw conclusions in Section IV.

II. Design of the Anomaly Detection System
The anomaly detection systems we propose are based on

the federated learning framework. As shown in Fig. 1, in
this system, each edge node is in charge of collecting and
pre-processing the local data for training the anomaly clas-
sification model. After conducting training of the model
based on the local data, the parameters of the model are
reported to the cloud server, whereby a new model can be
generated based on the aggregated parameters, which are
then fed back to the edge nodes to continue the training for
the next round. This process is repeated until the desired
classification accuracy is achieved or the result converges.

Using this FL framework, the edge nodes and the cloud
server interact with each other with the parameter instead
of the raw data. The virtues of the system can be summa-
rized as follows: [17]

• User privacy: it is more advantageous for evasion of
privacy security leakage based on the fact that the
raw data of users need not be sent to the cloud; the
parameters of the model are transmitted instead.

• Network bandwidth efficiency: participating devices
only send the updated model parameters instead of
the raw data, the cost of data communication can be
significantly reduced, and this system can mitigate
the burden on the networks.

• Low latency: the communication latency is much
lower than that of systems where decisions are made
in the cloud, which is desirable for certain time-
critical applications [18].

In the following, we discuss the details for the pre-
processing and training of the local data at the edge nodes,
as well as the aggregation of parameters and update of
global model at the cloud server.

A. Data pre-processing
For vectorizing the raw data for training, pre-processing

is a compulsory stage. As shown in Fig.2, it is divided into
three steps; namely, feature selection, feature extraction,
and dimensional reduction. For the feature selection and

Fig. 1. Architecture of the collaborative anomaly detection system
based on the FL framework.

extraction, they have a crucial impact on the detection
result, processing the redundancy elimination of the origi-
nal data and the text normalization is organized to obtain
the formatted data set. For the sensitive data within the
threshold time limit, the data is statistically modeled
to obtain its operating characteristics and forms, and to
classify and locate abnormal information. The one-hot
sequence conversion is used to convert text word data to
binary representations: valid indices are set to 1, otherwise
0. Then, the local data optimization is conducted through
data normalization using the Z-score method as follows:

Zx =
Xi − X̄

S̄x
, (1)

where X̄ and S̄x are the mean value and standard
deviation of the original data set.

Finally, the principal component analysis (PCA)
method [19] is adopted to reduce the dimensionality of
the data. Using the PCA algorithm, the redundant in-
formation can be removed to reduce the weight of data
while retaining important information in the data set,
thereby significantly reducing the computational cost in
the following training procedure.

B. Local model training at the edge node
Initially, the cloud server decides the basic parameter

settings such as learning rate, hyper-parameter of the
global model, etc. Then the server transmits the initial
global model parameters to every edge node. Afterward,
each edge node organizes pre-processing as the preliminary
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Fig. 2. Workflow at the edge node.

work for local training using the neural network, which
has excellent feature extraction and classification perfor-
mance. Furthermore, the weights and bias parameters in
the neural network can directly characterize the network
structure and model values. In specific terms for the neural
network, a multi-layer perceptron is chosen as the anomaly
detection classifier model at the edge node. As shown in
Fig. 3, our multi-layer perceptron structure consists of an
input layer, three hidden layers, and one output layer. The
input layer inserts corresponding samples (x1, x2, .., xn

in X). The hidden layers are connected with each fully
connected layer to ensure effective feature extraction and
classification. The hidden layers output f(WX+b), where
W is the corresponding weight, b is the offset, and f is
activation function. Moreover, the first two hidden layers
are followed by two dropout layers to cut off some neurons,
which can address the overfitting problem.

The sigmoid [20] function is used in the first hidden
layer to avoid the gradient explosion problem, and the
ELU [21] function is used in the second and last layer,
which is beneficial for retaining the data features more
completely. The result of each activation function is passed
to the next layer. In the output layer, the prediction of
normal/abnormal labels is conducted based on the results
of the hidden layers, whereby the mapping function of the
output layer maps the result to the binary classification
single output result space. The RMSProp [22] is used as
an optimization method, and Binary cross entropy is used
as a loss function in the output layer. After the training
of the local model, the edge node sends the parameters to
the server.

C. Global model aggregation and update
Assuming there are n total samples, (xi, yi) is the ith

sample, and w is the model parameter. Then the loss
function for the sample is fi(w) = l(xi; yi;w), and the
overall loss function for all samples is given by:

f(w) =
1

n

n∑
i=1

fi(w). (2)

Suppose there are K edges in the system, the sample
set of the kth edge is Lk, and nk denotes the number of

Fig. 3. Anomaly detection classifier based on multi-layer perceptron
on edges

samples in the kth edge. Thus the average loss function
for the kth edge is given by:

hk(w) =
1

nk

∑
i∈Lk

fi(w) (3)

Then the overall loss function for all edge nodes is as
follows:

f(w) =

K∑
i=1

nk

n
hk(w) =

1

n

K∑
i=1

∑
i∈Lk

fi(w) (4)

In each round t, each edge initially updates its local
model and compute the average gradient at the edge as
follows:

Gt
k = ▽hk(wt). (5)

Then the model parameter of the kth edge is updated
using the gradient algorithm as follows:

wt+1
k = wt

k − ηGt
k, (6)

where η is the learning rate. This updated parameter is
reported to the server.

After receiving the parameters from edge nodes, the
cloud server aggregates the parameters using the weighted
average aggregation (FedAvg) [23] as follows:

Wt+1 =
K∑

k=1

nk

n
wt+1

k (7)

In this way, the cloud server builds a new global model
for the next round based on the aggregated parameters,
which is fed back to all edge nodes.

This process is repeated a certain model convergence
criteria is satisfied, which is given by:

train_losst+1 − train_losst
train_losst

< δ, (8)

where δ is a prescribed threshold, and train_losst is given
by:

train_losst =

K∑
k=1

nk

n
Gk(t) (9)
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To prevent the case that the model is not converged, the
number of limit round should be opted. The opted number
of the maximum rounds will be mentioned particularly in
Table I

In cloud-edge interactions, the convergence of the cloud
model is used as the standard to define the system model
convergence. For a given edge, it obtains the initial up-
dated model from the cloud at the start of each round of
training. It then updates the model and transmits these
updates to the cloud. If the cloud model converges, and the
cloud anomaly detection classification will be redistributed
to each edge as the final model.

III. Experimental Results
A. Experiment Setup

Our experiment is based on the NSL-KDD data set,
which is used to train and test the models. It contains a set
of internet records with 41 features and 22 types of attack
labels, which consist of 67,343 normal data and 58,630
abnormal data, which contains 45,927 pieces of DDOS
attack data, amounting to 125,973 total samples.

The parameters used in the experiment are summarized
in Table I.

TABLE I
Experimental Setup Parameters

Parameter Value
Number of Local Epochs 20-40

Batch Size 90-120
Number of Clients 4
Max Data set Size 10,000

Convergence Threshold (δ) 0.01
Max Round Limit 50
Data set Setting 6 : 1 : 3

(training : validation : test)

The keras library is used to implement the neural
network based anomaly detection classifier in our work.
The socket library is adopted as the software environment
for achieving communication between the server and edge
nodes.

1) Evaluation method: The evaluation method is based
on 6 metrics; training accuracy, validation accuracy, test
accuracy, training loss, validation loss, and test validation.
The accuracy evaluation function is defined as follows:

accuracy =
ncorrect

n
, (10)

where the ncorrect is the number of correct samples in all
samples n. The accuracy values can directly reflect the
model’s performance, and the loss values represent the
effects of model training and testing.

2) Data Pre-processing: Considering the application in
a realistic scenario, the data distribution on different edge
nodes is supposed to be as diverse as possible. Since the
probability of each sampling is random, the new data
sets obtained after sampling have different distributions.

Fig. 4. Data set division in the proposed system.

Through the random sampling, non-independent and iden-
tically distributed (non-IID) data are obtained, which is
closer to the actual system data state.

3) Data set division: To avoid underfitting and overfit-
ting problems, the original data set is divided into three
subsets; training set, validation set, and test set as the
ratio of 6: 3: 1. This way can estimate the generalization
error effectively. The performance of the model can be
evaluated, as it can guarantee that the model performance
satisfies the requirements. We then test the generalization
performance and accuracy of the model on the test set (see
Fig. 4).

In the training process, the training accuracy and loss
on the verification set are used as references to adjust the
hyper-parameters of the model to make the system model
reach the optimal state.

After the model has converged, the module test is
organized on each edge test data set and evaluates the
effectiveness of the model by the aforementioned 6 factors.
Afterward, the system uses different edge test sets to test
each edge’s model and evaluates the generalization ability
of each local anomaly detection classification model after
optimizing the model parameters.

B. Experiment results
In this section, we evaluate the effectiveness of the

collaborative anomaly detection system based on the fed-
erated learning framework. As a comparison, we also
consider the non-FL scheme whereby each edge only trains
its classification model based on its local data. Thus, the
interaction between cloud server and participant edges is
eliminated from the proposed scheme, but each edge’s
local training model is totally same as proposed FL-
based anomaly detection system. It will not aggregate
the edge parameters in every round, the four edges works
respectively themselves. Therefore, due to the comparison
between FL and non-FL performance, the federated learn-
ing’s effectiveness can be identified.

Before the comparison, we adopt several parameters
to optimize the system settings. To find the best set of
parameters, a numbers of epoch and batch sizes are tried
to generate higher test accuracy and lower test loss. The
experiments are organized based on 4 edge nodes and
summarized in Table II. They start from small numbers
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Fig. 5. The training loss of the cloud model.

of epochs and batches before finally achieving the highest
test accuracy value (97.92%) and the relatively lowest test
loss (8.43%) on 30 epoch size and 120 batch size.

TABLE II
Parameter adoption experimental results

# of # of # of % of test % of
data set epochs batches accuracy test loss

10,000 20 90 97.28 8.76
10,000 30 90 97.14 9.04
10,000 20 100 97.02 9.78
10,000 30 100 97.02 9.42
10,000 20 120 96.68 10.15
10,000 30 120 97.92 8.43
10,000 40 120 97.11 9.55

Based on this parameter settings in Table II, the com-
parison experiment between the FL-based system and the
non-FL system is conducted in the following section.

1) System model assessment: Fig 5 shows the training
loss and validation loss based on an epoch size of 30
and a batch size of 120. The training loss and validation
loss are calculated and recorded in each round. At each
round, the loss of system training and validation decrease
together and eventually converge on the fourth round.
This trend demonstrates that the overall performance of
the system is improving round by round. Consequently,
the training and validation losses converge to 6.00% and
7.01%, respectively.

On the other hand, the training and the validation ac-
curacy are shown in Fig 6. It can be seen that the training
and validation accuracy keeps increasing, which suggests
that the classification model is becoming enhanced. Conse-
quently, the final training and validation accuracy reached
respectively 98.47% and 98.24%. As summarized in Table
II, a test accuracy of 97.92% and a test loss of 8.43% can
be achieved.

C. Model comparison

We also compare the local model performance without
interaction with the cloud. The final evaluation metrics
include edge training accuracy and loss, edge validation
accuracy and loss, and edge test accuracy and loss.
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Fig. 6. The training accuracy of the cloud model.

Based on the above-mentioned metrics, the performance
comparison experiment between FL-based models and
non-FL models is shown in Table III.

TABLE III
The performance comparison between FL and non-FL models

Training acc Valid acc Test acc
Training loss Valid loss Test loss

Edge1 (FL) 99.17 98.14 98.80
3.73 9.41 6.01

Edge2 (FL) 98.24 98.08 97.34
7.25 6.83 9.78

Edge3 (FL) 98.72 98.08 98.32
4.86 5.66 7.04

Edge4 (FL) 97.76 98.68 97.24
8.16 6.17 10.89

FL 98.47 98.24 97.92
(aggregated) 5.60 7.01 8.43

Edge1 (non-FL) 97.13 96.76 96.74
7.35 8.14 8.53

Edge2 (non-FL) 97.64 97.42 96.92
6.32 8.28 7.93

Edge3 (non-FL) 98.26 98.50 97.70
5.54 5.40 6.93

Edge4 (non-FL) 98.59 97.66 97.72
4.85 8.33 7.27

non-FL 97.91 97.59 97.27
(aggregated) 6.02 7.54 7.67

From the macroscopic point of view, the FL model
achieves 98.47% training accuracy (acc), 98.24% validation
acc, and 97.92% test acc. On the other hand, the non-FL
model achieves 97.91% training acc, 97.59% validation acc,
and 97.27% test acc. Moreover, FL’s loss values are 5.60%,
7.01%, and 8.43%, and non-FL’s are 6.02%, 7.54%, and
7.67%, respectively. Both FL and non-FL based schemes
have similar trends in results, but the FL-based scheme
performs better in accuracy, though its loss is slightly
worse. In the non-FL, each edge builds its own model
with only its own local data, Thus, the models should
be more localized than the FL-based scheme. Therefore
we assume that non-FL scheme performed better in loss
data. On the contrary, in the FL-based scheme, each local
model gets aggregated as a global model, which tends to
better generalize compared to non-FL models, as it adopts
the learnings of other edges, providing for achieve better
accuracy than the non-FL scheme.
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Consequently, as dynamical IoT circumstances possess
many random instantiations of any of a number of param-
eters (users, edges, devices) that connect and disconnect
at any time. Due to the unique characteristics of the
IoT circumstance, even though FL-based model does not
perform significantly better than non-FL model, it is still
a viable solution as it offers a very generalized model to
all edges.

IV. Conclusion

This paper proposes a federated learning-based anomaly
detection system in IoT environment. We adopt a neural
network to act as the anomaly classification model at the
edges and the federated learning framework to communi-
cate and aggregate model parameters at the server in order
to build a generalized model within every edge area. This
system allows us to reduce the bandwidth requirement
and to improve transmission latency and user privacy
protection. We conduct extensive experiments to evaluate
the FL-based anomaly detection system and the non-FL
anomaly detection system. Experimental results show that
even though FL shows slightly worse loss performance due
to less edge-localization, it achieves better accuracy by
building applicable models across a wide variety of cases.
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